skip to main content


Search for: All records

Creators/Authors contains: "Wang, Jonathan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Wildfire modifies the short- and long-term exchange of carbon between terrestrial ecosystems and the atmosphere, with impacts on ecosystem services such as carbon uptake. Dry western US forests historically experienced low-intensity, frequent fires, with patches across the landscape occupying different points in the fire-recovery trajectory. Contemporary perturbations, such as recent severe fires in California, could shift the historic stand-age distribution and impact the legacy of carbon uptake on the landscape. Here, we combine flux measurements of gross primary production (GPP) and chronosequence analysis using satellite remote sensing to investigate how the last century of fires in California impacted the dynamics of ecosystem carbon uptake on the fire-affected landscape. A GPP recovery trajectory curve of more than five thousand fires in forest ecosystems since 1919 indicated that fire reduced GPP by 157.4 ± 7.3 g C m − 2 y − 1 ( mean ± SE,   n = 1926 ) in the first year after fire, with average recovery to prefire conditions after ∼ 12 y. The largest fires in forested ecosystems reduced GPP by 393.8 ± 15.7 g C m − 2 y − 1 ( n = 401) and took more than two decades to recover. Recent increases in fire severity and recovery time have led to nearly 9.9 ± 3.5 MMT CO 2 (3-y rolling mean) in cumulative forgone carbon uptake due to the legacy of fires on the landscape, complicating the challenge of maintaining California’s natural and working lands as a net carbon sink. Understanding these changes is paramount to weighing the costs and benefits associated with fuels management and ecosystem management for climate change mitigation. 
    more » « less
  2. With the objective of understanding microscopic principles governing thermal energy flow in nanojunctions, we study phononic heat transport through metal-molecule-metal junctions using classical molecular dynamics (MD) simulations. Considering a single-molecule gold-alkanedithiol-gold junction, we first focus on aspects of method development and compare two techniques for calculating thermal conductance: (i) The Reverse Nonequilibrium MD (RNEMD) method, where heat is inputted and extracted at a constant rate from opposite metals. In this case, the thermal conductance is calculated from the nonequilibrium temperature profile that is created at the junction. (ii) The Approach-to-Equilibrium MD (AEMD) method, with the thermal conductance of the junction obtained from the equilibration dynamics of the metals. In both methods, simulations of alkane chains of a growing size display an approximate length-independence of the thermal conductance, with calculated values matching computational and experimental studies. The RNEMD and AEMD methods offer different insights, and we discuss their benefits and shortcomings. Assessing the potential application of molecular junctions as thermal diodes, alkane junctions are made spatially asymmetric by modifying their contact regions with the bulk, either by using distinct endgroups or by replacing one of the Au contacts with Ag. Anharmonicity is built into the system within the molecular force-field. We find that, while the temperature profile strongly varies (compared with the gold-alkanedithiol-gold junctions) due to these structural modifications, the thermal diode effect is inconsequential in these systems—unless one goes to very large thermal biases. This finding suggests that one should seek molecules with considerable internal anharmonic effects for developing nonlinear thermal devices. 
    more » « less
  3. Let X X be an affine spherical variety, possibly singular, and L + X \mathsf L^+X its arc space. The intersection complex of L + X \mathsf L^+X , or rather of its finite-dimensional formal models, is conjectured to be related to special values of local unramified L L -functions. Such relationships were previously established in Braverman–Finkelberg–Gaitsgory–Mirković for the affine closure of the quotient of a reductive group by the unipotent radical of a parabolic, and in Bouthier–Ngô–Sakellaridis for toric varieties and L L -monoids. In this paper, we compute this intersection complex for the large class of those spherical G G -varieties whose dual group is equal to G ˇ \check G , and the stalks of its nearby cycles on the horospherical degeneration of X X . We formulate the answer in terms of a Kashiwara crystal, which conjecturally corresponds to a finite-dimensional G ˇ \check G -representation determined by the set of B B -invariant valuations on X X . We prove the latter conjecture in many cases. Under the sheaf–function dictionary, our calculations give a formula for the Plancherel density of the IC function of L + X \mathsf L^+X as a ratio of local L L -values for a large class of spherical varieties. 
    more » « less
  4. Free, publicly-accessible full text available August 1, 2024
  5. null (Ed.)
    Objectives. To examine the relationships among environmental characteristics, temperature, and health outcomes during heat advisories at the geographic scale of street segments. Methods. We combined multiple data sets from Boston, Massachusetts, including remotely sensed measures of temperature and associated environmental characteristics (e.g., canopy cover), 911 dispatches for medical emergencies, daily weather conditions, and demographic and physical context from the American Community Survey and City of Boston Property Assessments. We used multilevel models to analyze the distribution of land surface temperature and elevated vulnerability during heat advisories across streets and neighborhoods. Results. A substantial proportion of variation in land surface temperature existed between streets within census tracts (38%), explained by canopy, impervious surface, and albedo. Streets with higher land surface temperature had a greater likelihood of medical emergencies during heat advisories relative to the frequency of medical emergencies during non–heat advisory periods. There was no independent effect of the average land surface temperature of the census tract. Conclusions. The relationships among environmental characteristics, temperature, and health outcomes operate at the spatial scale of the street segment, calling for more geographically precise analysis and intervention. 
    more » « less
  6. Abstract

    Ecosystems in the North American Arctic-Boreal Zone (ABZ) experience a diverse set of disturbances associated with wildfire, permafrost dynamics, geomorphic processes, insect outbreaks and pathogens, extreme weather events, and human activity. Climate warming in the ABZ is occurring at over twice the rate of the global average, and as a result the extent, frequency, and severity of these disturbances are increasing rapidly. Disturbances in the ABZ span a wide gradient of spatiotemporal scales and have varying impacts on ecosystem properties and function. However, many ABZ disturbances are relatively understudied and have different sensitivities to climate and trajectories of recovery, resulting in considerable uncertainty in the impacts of climate warming and human land use on ABZ vegetation dynamics and in the interactions between disturbance types. Here we review the current knowledge of ABZ disturbances and their precursors, ecosystem impacts, temporal frequencies, spatial extents, and severity. We also summarize current knowledge of interactions and feedbacks among ABZ disturbances and characterize typical trajectories of vegetation loss and recovery in response to ecosystem disturbance using satellite time-series. We conclude with a summary of critical data and knowledge gaps and identify priorities for future study.

     
    more » « less
  7. Abstract

    Many studies have used time series of satellite-derived vegetation indices to identify so-called greening and browning trends across the northern high-latitudes and to suggest that the productivity of Arctic-Boreal ecosystems is changing in response to climate forcing at local and continental scales. However, disturbances that alter land cover are prevalent in Arctic-Boreal ecosystems, and changes in Arctic-Boreal land cover, which complicate interpretation of trends in vegetation indices, have mostly been ignored in previous studies. Here we use a new land cover change dataset derived from Landsat imagery to explore the extent to which land cover and land cover change influence trends in the normalized difference vegetation index (NDVI) over a large (3.76 M km2) area of NASA’s Arctic Boreal Vulnerability Experiment, which spans much of northwestern Canada and Alaska. Between 1984 and 2012, 21.2% of the study domain experienced land cover change and 42.7% had significant NDVI trends. Land cover change occurred in 27.6% of locations with significant NDVI trends during this period and resulted in greening and browning rates 48%–128% higher than in areas of stable land cover. While the majority of land cover change areas experienced significant NDVI trends, more than half of areas with stable land cover did not. Further, the extent and magnitude of browning and greening trends varied substantially as a function of land cover class and land cover change type. Forest disturbance from fire and timber harvest drove over one third of statistically significant NDVI trends and created complex mosaics of recent forest loss (as browning) and post-disturbance recovery (as greening) at both landscape and continental scale. Our results demonstrate the importance of land cover changes in highly disturbed high-latitude ecosystems for interpreting trends of NDVI and productivity across multiple spatial scales.

     
    more » « less